The Structural Influence of Graphene Oxide on Its Fragmentation during Laser Desorption/Ionization Mass Spectrometry for Efficient Small-Molecule Analysis.
نویسندگان
چکیده
The structural influence of graphene oxide (GO) on laser desorption/ionization mass spectrometry (LDI-MS) analysis of small molecules was systematically investigated by using size-fractionated GO. For fractionation of GO, pH-assisted centrifugation, sequential vacuum filtration, and sonochemical cutting processes were employed and the size-fractionated GO was thoroughly characterized to understand their size-dependent optochemical properties. Then, the fractionated GO was applied to the analysis of various small molecules by LDI-MS to investigate the relationship between their optochemical properties and LDI-MS performance. We found that large GO sheets (>0.5 μm) were more prone to fragmentation under laser irradiation during LDI-MS analysis than small GO sheets (<0.5 μm). In this regard, the LDI-MS analysis efficiency of various small molecules was significantly improved by using nanosized GO (NGO) as a matrix without background interference. In particular, NGO was successfully applied to the sensitive detection of hydrophobic pollutant molecules without requiring any surface-functionalization, enrichment, and separation process. Therefore, the present study could provide important basic information and be a practical tool for the development of simple and efficient LDI-MS platforms by using GO derivatives.
منابع مشابه
Analysis of the Photo Conversion of Asphaltenes Using Laser Desorption Ionization Mass Spectrometry: Fragmentation, Ring Fusion, and Fullerene Formation
The conversion or photo conversion of asphaltenes to polycyclic aromatic hydrocarbons (PAH’s) promoted by a laser source is analyzed using both experimental and theoretical methods. We propose that during measurements performed at an intermediate laser power, fragmentation to afford PAH’s and ring fusion to yield fused PAH’s (FPAH’s) may occur either within molecular clusters (resin case) or wi...
متن کاملAn antibody-graphene oxide nanoribbon conjugate as a surface enhanced laser desorption/ionization probe with high sensitivity and selectivity.
Graphene oxide nanoribbons (GONRs) were covalently functionalized with an antibody using polyethylene glycol (PEG) as a linker to produce a novel probe for surface enhanced laser desorption/ionization mass spectrometry (SELDI MS). This probe provides a highly sensitive and selective platform for enrichment and MS detection of small molecules in complex media.
متن کاملAnalysis of flavonoids by graphene-based surface-assisted laser desorption/ionization time-of-flight mass spectrometry.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a simple and fast technique for the analysis of large biomolecules but is not suitable for the detection of low molecular weight molecules and compounds, such as flavonoids and phenylpropanoids, mainly due to the lack of an appropriate matrix. Flavonoids and phenylpropanoids, such as coumarin and its ...
متن کاملReduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin.
A reduced graphene oxide (rGO) film was used as the matrix in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) for the detection of octachlorodibenzo-p-dioxin (OCDD) with a detection weight as low as 500 pg.
متن کاملLarge Scale Nanoparticle Screening for Small Molecule Analysis in Laser Desorption Ionization Mass Spectrometry.
Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 21 19 شماره
صفحات -
تاریخ انتشار 2015